Transport of the Cu(II) Bound with Histidine-Containing Tripeptides to Cysteine. Coordination Mode and Exchangeability of Cu(II) in the Complexes

Akira Hanaki,* Nobuo Ikota, Jun-ichi Ueda, Toshihiko Ozawa, and Akira Odani[†]

National Institute of Radiological Sciences, Anagawa 4-9, Inage-ku, Chiba 263-8555 †Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8602

Received May 26, 2003

The transport of Cu(II) complexed with histidine-containing tripeptides ($Cu(H_{-i}L)$, L = HisGlyGly (i = 2), Gly-HisGly (i = 1), and GlyGlyHis (i = 2)) to cysteine was examined by a stopped-flow spectrophotometric method. The $S \to Cu(II)$ charge transfer (LMCT) bands at 335 nm and 390 nm were used as probes for tracing the reaction. Primarily formed was the ternary $Cu(H_{-1}L)(Cys^-)$ complex. The rate of the $Cu(H_{-1}L)(Cys^-)$ formation depended on the affinity of Cu(II) for the donor atoms at the fourth binding site of $Cu(H_{-2}L)$. $Cu(H_{-1}L)(Cys^-)$ subsequently reacted with free Cys^- to yield a binary complex, $Cu(Cys^-)_2$. The rate of $Cu(H_{-1}L)(Cys^-)$ formation was generally faster than that of conversion from $Cu(H_{-1}L)(Cys^-)$ to $Cu(Cys^-)_2$. An exception was found in the reaction with $Cu(H_{-2}GlyGlyHis)$, where the relation $k_{1+} < k_{2+}$ existed. The ternary complex, $Cu(H_{-1}HisGlyGly)(Cys^-)$, was too labile to be detect by the conventional stopped-flow methods. Probably, $Cu(H_{-1}HisGlyGly)(Cys^-)$ upon forming changed spontaneously to $Cu(HisGlyGly)(Cys^-)$, in which the N-terminal His residue coordinated to the Cu(II) via the amino and imidazole nitrogens, and rapidly changed to $Cu(Cys^-)_2$.

It is well-known that naturally occurring peptides can coordinate to heavy-metal ions, such as Cu(II), to form stable chelate complexes. Amide groups in simple peptides coordinate to Cu(II) in a fashion with deprotonation of the amide nitrogens. 1 It is relatively easy to establish the site of coordination, because X-ray crystallographic results of single crystals may be extrapolated to species in solution with confidence.² The Cu(II) stepwise forms several kinds of peptide complexes, abbreviated as CuL, Cu($H_{-1}L$), Cu($H_{-2}L$), and Cu($H_{-3}L$), depending on the pH.³ The Cu(II) first anchors the terminal amino nitrogen, and then coordinates to the carbonyl oxygen of the amide group, forming a chelate complex, abbreviated as CuL; 4 otherwise mentioned, Cu in the complexes denotes Cu(II). In weakly acidic solutions between pH 5-6, the amide group, coordinated to the Cu(II) of CuL, is deprotonated and the deprotonated-amide nitrogen replaces the carbonyl oxygen forming the Cu(H₋₁L) species with a Cu-N⁻ bond and a Cu-NH₂ bond.⁴ As the pH increases, successive deprotonation of the neighboring amide group and exchange of the donor from the oxygen to the deprotonated amide-nitrogen occur to form $Cu(H_{-2}L)$ with N,N^-,N^-,O^- -donors, and finally the $Cu(H_{-3}L)$ species with N,N^-,N^-,N^- -donors (Scheme 1). The thus-formed fused-chelate complexes are thermodynamically stable, as studied by the pH-titration methods.⁵

Peptides, which have side chains with coordination ability, form Cu(II) complexes in a slightly different mode. A typical example is observed in His-containing peptides. Donor atoms in the CuL species for the HisGlyGly complex are considered to be the terminal amino and imidazole nitrogens, because the imidazole nitrogen has a stronger affinity for Cu(II) than the carbonyl oxygen. As the pH increases, the peptide bond between His and Gly in the CuL is deprotonated, and the deprotonated-amide nitrogen replaces the imidazole nitrogen, binding to the Cu(II) to form the $Cu(H_{-1}L)$ species. Similarly, Gly-HisGly and GlyGlyHis can form the $Cu(H_{-1}L)$ and $Cu(H_{-2}L)$ species involving $N,N^-,N(Im),O^-$ -donors and N,N^-,N^-,N (Im)-donors, respectively (Scheme 2).

The histidyl residue has been recognized as an important

Scheme 1. Equilibrium for the deprotonation of CuL and coordination structure of the $Cu(H_{-i}L)$ species (i = 1, 2, or 3); L = tetrapeptide or higher.

$Cu(H_{-i}L)$	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	$\lambda_{\rm max}/{\rm nm}~({\cal E}/{\rm M}^{-1}~{\rm cm}^{-1})$
Cu(H ₋₂ GlyGlyGly)	Н	Н	Н	552 (152)
$Cu(H_{-2}GlyGlyLeu)$	Н	Н	$CH_2CH(CH_3)_2$	541 (166)
$Cu(H_{-2}GlyLeuGly)$	Н	$CH_2CH(CH_3)$	Н	547 (156)
$Cu(H_{-2}LeuGlyGly)$	$CH_2CH(CH_3)_2$	Н	Н	548 (162)
$Cu(H_{-2}HisGlyGly)$	CH_2Im	Н	Н	555 (131)

CONHCH₂COO
$$\frac{1}{1000}$$
 $\frac{1}{1000}$ $\frac{1$

Scheme 2. Coordination structure of the Cu(II) complexes of His- and Leu-containing tripeptides at pH 8.7.

metal binding site in peptides and proteins in biological processes, including metal-ion storage and transport. ^{8–10} Albumin was first identified as the plasma protein most likely to bind ionic copper, and could bind about 17% of Cu(II). ¹¹ The binding site of Cu(II) is considered to be located at the amino-terminus involving a histidine at the third position. For example, the amino acid sequences at the amino-terminus are as follows: Asp–Ala–His–Lys– for human and Asp–Thr–His–Lys– for bovine albumins. ¹² The Cu(II) bound to albumin is transported to histidine as Cu(His)₂, which is reduced to Cu(I) and transported into the liver cells. ^{13,14} In this process, His is considered to participate in the formation of a ternary complex, Cu(albumin)-(His), as an intermediate. In this connection, extensive studies were carried out using the Cu(H₋₂GlyGlyHis)/His system as a model for Cu(II) transport in blood. ^{15,16}

We have been studying Cu(II) transport from $Cu(H_{-i}L)$ complexes to CysH via a ternary complex, Cu(H₋₁L)(Cys⁻), where Cys⁻ denotes cysteinate and $i = 1, 2, \text{ or } 3.^{17-19}$ The S \rightarrow Cu(II) charge transfer (LMCT) absorption in the UV region was used as a probe for pursuing the ligand-exchange. It is very valuable to study the transport of Cu(II) from the GlyGlyHis complex to CysH, because, if the ternary Cu(H₋₁GlyGlyHis)(Cys⁻) complex could be formed, it is easily confirmed by its $S \to Cu(II)$ CT absorption. The ligand-exchange reaction in the $Cu(H_{-i}L)$ species, (i = 1, 2, or 3), begins at the fourth binding site in the chelate ring C; the carboxylate O in Cu(H₋₂GlyGlyGly) and the imidazole N in Cu(H₋₂GlyGlyHis) occupies the fourth binding site. Here, the chelate rings in $Cu(H_{-i}L)$ are termed as A, B and C from the amino-terminus. The thiolate S⁻ enters first in the fourth binding site of the Cu(II). Subsequently, the amino nitrogen of the coordinated Cys⁻ replaces the deprotonated-amide nitrogen, coordinating with the Cu(II) to form the ternary complex. Accordingly, affinities of the fourth ligand

in $Cu(H_{-2}L)$ for the Cu(II) are expected to play an important role in determining the rate of $Cu(H_{-1}L)(Cys^{-})$ formation.

In this paper, were reported on the relation between the mode of coordination and the pathway of the transport of the Cu(II) bound with His-containing tripeptides, including HisGlyGly, GlyHisGly, and GlyGlyHis, to CysH, compared with those of complexes of Leu-containing tripeptides.

Experimental

Materials. Histidine-containing tripeptides were prepared by the conventional solution technique, ^{20–22} and leucine-containing peptides were purchased from BACHEM Feinchemikalien AG. (Switzerland). Those were pure, as checked by liquid chromatography. Copper(II) perchlorate, Cu(ClO₄)₂•6H₂O, from G. Frederick Smith Chem. Co. (Columbus, Oh), was used after recrystallization from hot water. L-Cysteine was a product of Sigma Chemical Co. (St. Louis, Mo). Other chemicals were the purest of commercially available and used without further purification.

Preparation of Sample Solutions. A stock solution of Cu(II) was prepared by dissolving $Cu(ClO_4)_2 \cdot 6H_2O$ in purified water. The water used was once deionized and doubly distilled from all glass apparatus; the first distillation was from alkaline permanganate. The Cu(II) solution was standardized by titration with 0.01 M EDTA (1 M = 1 mol dm⁻³) with murexide as an indicator. Solutions of the peptide complexes were freshly prepared using aliquots of the standardized Cu(II) solution with a 4 mole % excess peptide at pH 8.7 in a 0.01 M borate buffer. Solutions of CysH were freshly prepared prior to spectroscopic measurements. The ionic strength (I) was maintained at 0.1 M with NaClO₄.

Stopped-Flow Spectrophotometric Measurement. Absorbance changes at single wavelength were recorded and analyzed on a computerized Union RA-401 stopped-flow spectrophotometer equipped with a 5 mm quartz cell. A solution of 1.10×10^{-3} M

Cu(H_{-i}L) and five equivalents CysH was equilibrated at 25 °C under nitrogen in a vessel with a water jacket. After equilibration for 20 min, the reaction was initiated by mixing both solutions under nitrogen at 8 kg/cm².

The absorbance changes were recorded at intervals of either 5 nm or 10 nm over the range from 250 nm to 700 nm. The absorption spectrum was prepared by a point-by-point plot of the absorbance, an average of seven runs, against the wavelength. The dead time (DT) of the instrument, determined by the reaction of ascorbate with 2,4-dichlorophenol-indophenol, was 1.2 ms. 24 The spectrometer was calibrated by a previously reported method.¹⁹

Time-Dependent Distribution of the Transients. The concentrations of the Cu(II) and Cu(I) species during the reaction were calculated from absorbance-time plots at 265 nm, 330 nm and 390 nm. The ternary complex Cu(H₋₁L)(Cys⁻) exhibited absorptions at 330 nm, and the binary complexes Cu(Cys⁻)₂ at 330 nm and 390 nm. Their absorbances at 330 nm, A^{ter}_{330} and A^{bi}_{330} , are represented as follows:

$$A^{\text{ter}}_{330} = \frac{(A_{330} - \beta A_{390})}{1 - (\beta/\alpha)},\tag{1}$$

$$A^{\text{bi}}_{330} = 1 - A^{\text{ter}}_{330},\tag{2}$$

where α and β are experimentally obtainable constants $(9.00 \pm 0.05 \text{ and } 2.045 \pm 0.005)$. Detailed procedures for calculating the concentrations of each copper species had been reported previously.19

Results

Absorption Spectrum of the Transients. The $Cu(H_{-i}L)$; (i = 1, 2), for His-containing peptides, afforded red-brown transients instantly upon mixing with CysH. The absorption spectra obtained at various times in the CysH reactions with Cu(H₋₂HisGlyGly), Cu(H₋₁GlyHisGly), and Cu(H₋₂GlyGly-His) are shown in Figs. 1, 2, and 3.

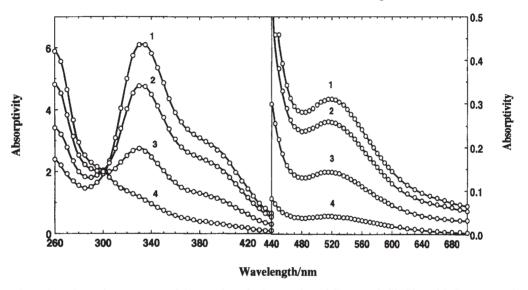


Fig. 1. Time-dependent absorption spectrum of the transients in the reaction of $Cu(H_{-2}HisGlyGly)$ with CysH at pH 8.7. [Cu(II)] = 4.98×10^{-4} M, [CysH] = 2.51×10^{-3} M, I = 0.1 M NaClO₄. 1, DT, 2, 500 ms, 3, 2 s, and 4, 10 s.

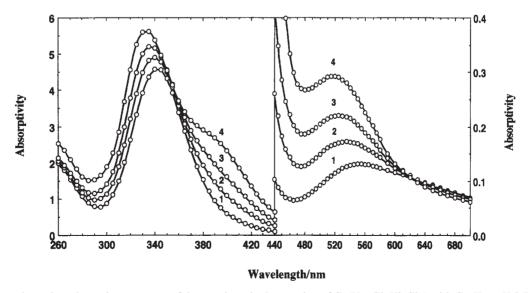


Fig. 2. Time-dependent absorption spectrum of the transients in the reaction of $Cu(H_{-1}GlyHisGly)$ with CysH at pH 8.7. [Cu(II)] = 4.98×10^{-4} M, [CysH] = 2.51×10^{-3} M, I = 0.1 M NaClO₄. 1, DT, 2, 20 ms, 3, 50 ms, and 4, 200 ms.

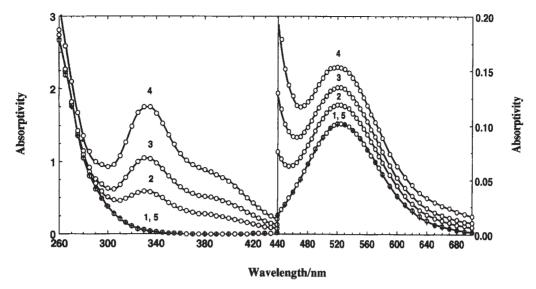


Fig. 3. Time-dependent absorption spectrum of the transients in the reaction of $Cu(H_{-2}GlyGlyHis)$ with CysH at pH 8.7. [Cu(II)] = 5.16×10^{-4} M, [CysH] = 2.43×10^{-3} M, I = 0.1 M NaClO₄. 1, DT, 2, 1 s, 3, 2 s, 4, 5 s, and 5, Cu(H₋₂GlyGlyHis).

Generally, $Cu(H_{-i}L)$ reacts with CysH to first form a ternary complex, $Cu(H_{-1}L)(Cys^-)$, which subsequently reacts with one molar CysH to yield a binary complex, $Cu(Cys^-)_2$. ^{17,19} Those two complexes are labile, but distinguished from each other by the absorption spectrum, as stated above. The main pathway for this consecutive reactions can be represented as follows:

$$Cu(H_{-i}L) + Cys^{-} + (i-1)H^{+} \underset{k_{2-}}{\overset{k_{1+}}{\longleftrightarrow}} Cu(H_{-1}L)(Cys^{-})$$
 (3)

$$Cu(H_{-1}L)(Cys^{-}) + Cys^{-} + H^{+} \xrightarrow{k_{2+}} Cu(Cys^{-})_{2} + L$$
 (4)

 $Cu(H_{-1}L)(Cys^{-})$, $Cu(Cys^{-})_2$, or both are reduced, depending on the pH, to the Cu(I) species.

Cu(H₂HisGlyGly). At the beginning of the observation, $Cu(H_{-2}HisGlvGlv)$ afforded a transient with $S \rightarrow Cu(II)$ LMCT absorptions at 330 nm ($\varepsilon = 6000$) and 390 nm ($\varepsilon = 2880$), and d–d absorption at 525 nm ($\varepsilon = 300$), as shown in Fig. 1, where the vertical axis is expressed as mmolar absorptivity (absorbance/1 \times 10⁻³ M Cu(II)/1 cm). The absorption spectrum was typical of Cu(Cys⁻)₂. This was supported by its ESR spectrum. As the reaction progressed, the intensity of both the absorption and the ESR spectra decreased without changing their line-shape. Probably, the first transient Cu(H₋₁HisGlyGly)(Cys⁻), being labile, was converted to the Cu(Cys⁻)₂ species immediately upon mixing Cu(H₋₂HisGly-Gly) and CysH solutions. Generally, the ternary complex Cu(H₋₁glycinepeptide)(Cys⁻), in which the N-terminal amino and neighboring deprotonated-amide group bind to Cu(II), is fairly stable enough to be detected by stopped-flow spectroscopic methods. The ternary complex produced in the Cu(H₋₁HisGlyGly) reaction would have a different coordination structure from that of Cu(H₋₁glycinepeptide)(Cys⁻) species.

 $\text{Cu}(\text{H}_{-1}\text{GlyHisGly})$. Since the fourth binding site of the Cu(II) in $\text{Cu}(\text{H}_{-1}\text{GlyHisGly})$ was occupied by exchangeable oxygen from water or hydroxide ion, as shown in Scheme 2, the reaction with CysH occurred rapidly. The first formed spe-

cies may be the ternary complex, $Cu(H_{-1}GlyHisGly)(Cys^-)$, which is subsequently converted to $Cu(Cys^-)_2$. The absorption bands at 345 nm and 570 nm could be assignable to the $S \to Cu(II)$ LMCT and d–d transition of Cu(II). The ternary $Cu(H_{-1}L)(Cys^-)$ species, in which the L has a side chains in the middle of the peptide chain, e.g., GlyLeuGly, exhibit λ_{max} at 340–345 nm. As the reaction progressed, the absorption at 345 nm suffered a hypsochromic shift to 335 nm, and absorption around 390 nm newly appeared to increase. This indicates conversion from $Cu(H_{-1}GlyHisGly)(Cys^-)$ to $Cu(Cys^-)_2$.

 $\text{Cu}(\text{H}_{-2}\text{GlyGlyHis})$. The reaction of $\text{Cu}(\text{H}_{-2}\text{GlyGlyHis})$ with CysH occurred slowly. At the beginning, considerable amounts of the parent $\text{Cu}(\text{H}_{-2}\text{GlyGlyHis})$ complex remained, as shown in Fig. 3. The transient observed at 5 s, exhibiting the LMCT absorptions at 330 nm and 390 nm and the d–d transient observed.

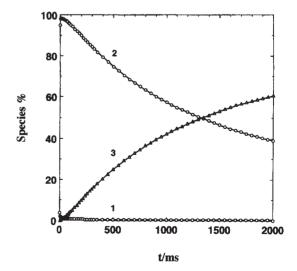


Fig. 4. Time-dependent distribution of copper species in the reaction of Cu(H₋₂HisGlyGly) with CysH at pH 8.7. 1; Cu(HisGlyGly)(Cys⁻), 2; Cu(Cys⁻)₂, and 3; Cu(I) species. Conditions same as under Fig. 1.

sition at 525 nm, was identified to $Cu(Cys^-)_2$. It was suggested that the $Cu(H_{-1}GlyGlyHis)(Cys^-)$ upon forming was likely to change at a relatively fast rate to $Cu(Cys^-)_2$, which was successively reduced to Cu(I) species. The maximal amounts of $Cu(Cys^-)_2$, estimated from the intensity of the spectrum, was at most 30% of the total copper at 5 s.

Distribution of Cu(II) Species during the Reaction. It has been revealed that the bulky side chain of peptides in $Cu(H_{-i}L)$ either accelerates or retards the ligand-exchange reaction. The distribution of copper species during the reaction with $Cu(H_{-2}HisGlyGly)$, $Cu(H_{-1}GlyHisGly)$, and $Cu(H_{-2}GlyGly-His)$ was calculated as a function of time, compared with those for $Cu(H_{-2}LeuGlyGly)$, $Cu(H_{-1}GlyLeuGly)$, and $Cu(H_{-2}Gly-GlyLeu)$ (Figs. 4–9).

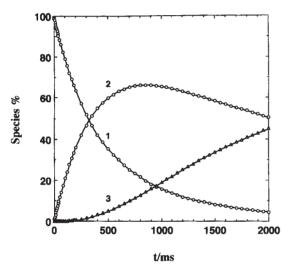


Fig. 5. Time-dependent distribution of copper species in the reaction of Cu(H $_{-2}$ LeuGlyGly) with CysH at pH 8.7. 1; Cu(H $_{-1}$ LeuGlyGly)(Cys $^{-}$), 2; Cu(Cys $^{-}$) $_{2}$, and 3; Cu(I) species. [Cu(II)] = 5.03×10^{-4} M, [CysH] = 2.50×10^{-3} M, I = 0.1 M NaClO $_{4}$.

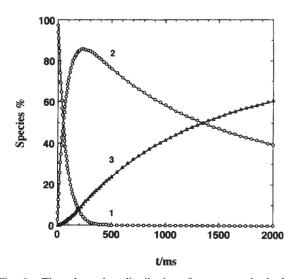


Fig. 6. Time-dependent distribution of copper species in the reaction of $Cu(H_{-1}GlyHisGly)$ with CysH at pH 8.7. 1; $Cu(H_{-1}GlyHisGly)(Cys^{-})$, 2; $Cu(Cys^{-})_2$, and 3; Cu(I) species. Conditions same as under Fig. 2.

Cu(H_2HisGlyGly) and Cu(H_2LeuGlyGly). As predicted from Fig. 1, both the rate constants, k_{1+} and k_{2+} , in Eqs. 3 and 4 were large enough to change the parent Cu(H_2HisGlyGly) complex completely to Cu(Cys⁻)₂ within the dead time (DT) of the instrument (ca. 1.2 ms). The chelate-ring **A**, constructed by the N-terminal His residue, in Cu(H_1HisGlyGly) (Cys⁻) was kinetically labile and rapidly opened to yield Cu(Cys⁻)₂, as shown in Fig. 4. In contrast, the ring **A** in Cu(H_1LeuGlyGly)(Cys⁻) was relatively stable, so that the k_2 could be determined $(0.9 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}).^{25}$ The maximal amount for the Cu(Cys⁻)₂ evaluated was approximately 70% of the total copper at 800 ms in Fig. 5.

 $Cu(H_{-1}GlyHisGly)$ and $Cu(H_{-2}GlyLeuGly)$. In the reac-

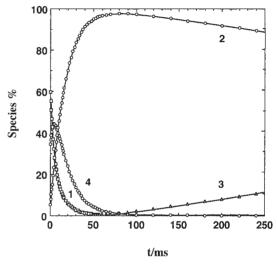


Fig. 7. Time-dependent distribution of copper species in the reaction of Cu(H $_2$ GlyLeuGly) with CysH at pH 8.7. 1; Cu(H $_2$ GlyLeuGly), 2; Cu(H $_1$ GlyLeuGly)(Cys $^-$), 3; Cu(Cys $^-$) $_2$, and 4; Cu(I) species. [Cu(II)] = 5.03×10^{-4} M, [CysH] = 2.50×10^{-3} M, I = 0.1 M NaClO $_4$.

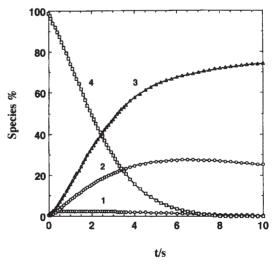


Fig. 8. Time-dependent distribution of copper species in the reaction of $Cu(H_{-2}GlyGlyHis)$ with CysH at pH 8.7. 1; $Cu(H_{-1}GlyGlyHis)(Cys^-)$, 2; $Cu(Cys^-)$ ₂, 3; Cu(I) species, and 4: $Cu(H_{-2}GlyGlyHis)$. Conditions same as under Fig. 3.

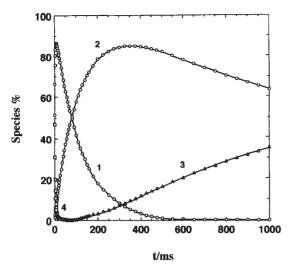


Fig. 9. Time-dependent distribution of copper species in the reaction of Cu(H $_2$ GlyGlyLeu) with CysH at pH 8.7. 1; Cu(H $_2$ GlyGlyLeu)(Cys $^-$), 2; Cu(Cys $^-$) $_2$, and 3; Cu(I) species. [Cu(II)] = 5.03×10^{-4} M, [CysH] = 2.50×10^{-3} M, I = 0.1 M NaClO₄.

tion of $Cu(H_{-2}GlyLeuGly)$ with CysH, the isobutyl group attached to the chelate ring $\bf B$ not only retarded the formation of $Cu(H_{-1}GlyLeuGly)(Cys^-)$ from $Cu(H_{-2}GlyLeuGly)$, but also accelerated the formation of $Cu(Cys^-)_2$ from the ternary species. Those were clarified by the species distribution curve shown in Fig. 7, which indicates that $Cu(Cys^-)_2$ occupied more than 95% of the total copper at 80 ms. $Cu(H_{-1}GlyHisGly)$ has a 5-6-membered fused-chelate structure and the fourth binding site of the Cu(II) is occupied by the kinetically exchangeable oxygen from the coordination water. Then, the formation of the $Cu(H_{-1}GlyHisGly)(Cys^-)$ species was very rapid, as shown in Fig. 6. The side chain in the ring $\bf B$ appeared to slightly enhance the $Cu(Cys^-)_2$ formation as compared with the $Cu(H_{-2}GlyGlyGly)$.

Cu(H₋₂GlyGlyHis) and Cu(H₋₂GlyGlyLeu). A bulky isobutyl group in $Cu(H_{-2}GlyGlyLeu)$ slightly retards opening the chelate ring C.²⁵ Cu(H₋₂GlyGlyHis), involving the imidazole nitrogen in the fourth binding site, reacted at a slower rate with CysH. A small amount of $Cu(H_{-1}GlyGlyHis)(Cys^{-})$, less than 3% of the total copper, was formed in the reaction, as shown in Fig. 8. In addition, since the rate constant k_{2+} was bigger than k_{1+} , the ternary complex $Cu(H_{-1}GlyGlyHis)$ (Cys⁻) upon forming spontaneously changed to Cu(Cys⁻)₂. This is the reason why the spectrum of the ternary complex could not be observed at any time over the reaction period. Furthermore, as Cu(Cys⁻)₂ formed, it was likely to suffer reduction, and thus amount was at most 30% of the total copper at 5-6 s after the start of reaction. The formation of Cu(Cys⁻)₂ appeared to progress in parallel with its reduction.

Initial increases in the species distribution curves for the $Cu(H_{-1}L)(Cys^-)$ species obeyed a second-order rate expression. From the curves, the apparent second-order rate constants, k'_{1+} , for each reaction system were tentatively estimated. The results are summarized in Table 1. Here, "v. rapid" means that k'_{1+} is bigger than an order of magnitude of $10^6 \ M^{-1} \ s^{-1}$.

Table 1. Apparent Second-Order Rate Constants for the Reaction of $Cu(H_{-i}L)$ with CysH at pH 8.7

$Cu(H_{-i}L)$	$k_{1+}/10^3 \text{ M}^{-1} \text{ s}^{-1}$	$k_{2+}/10^3 \text{ M}^{-1} \text{ s}^{-1}$
$Cu(H_{-2}GlyGlyGly)$	v. rapid ^{a)}	3.3^{13}
$Cu(H_{-2}HisGlyGly)$	v. rapid	v. rapid
$Cu(H_{-2}LeuGlyGly)$	v. rapid	0.9^{13}
$Cu(H_{-1}GlyHisGly)$	v. rapid	6.9
$Cu(H_{-2}GlyLeuGly)$	130^{13}	11^{13}
$Cu(H_{-2}GlyGlyHis)$	0.04	3–4
$Cu(H_{-2}GlyGlyLeu)$	300^{13}	3.0^{13}

a) Very rapid; $k > \sim 10^6 \text{ M}^{-1} \text{ s}^{-1}$.

Discussion

Absorption Spectrum of the Ternary Complex, $\mathbf{Cu}(\mathbf{H}_{-1}\mathbf{L})(\mathbf{Cys}^-)$. The $\mathbf{Cu}(\mathbf{H}_{-i}\mathbf{L})$ species examined, except for $\mathbf{Cu}(\mathbf{H}_{-2}\mathbf{His}\mathbf{Gly}\mathbf{Gly})$, formed ternary $\mathbf{Cu}(\mathbf{H}_{-1}\mathbf{L})(\mathbf{Cys}^-)$ complexes. The amino acid residue at N-terminus coordinated to $\mathbf{Cu}(\mathbf{II})$ via the amino and the neighboring deprotonated-amide nitrogens, constructing a five-membered chelate ring (Scheme 3). The absorption spectrum of the $\mathbf{Cu}(\mathbf{H}_{-1}\mathbf{L})(\mathbf{Cys}^-)$ could be resolved to three transition bands by a previously reported method. The results are summarized in Table 2. The absorption bands at 330–340 nm, assignable to a $\sigma(\mathbf{S}) \to \mathbf{Cu}(\mathbf{II})$ CT band, were flanked at lower energy (400 nm) by a weaker $\pi(\mathbf{S}) \to \mathbf{Cu}(\mathbf{II})$ CT band. The side-chain in the ring **B** tended to shift the $\sigma(\mathbf{S}) \to \mathbf{Cu}(\mathbf{II})$ CT band to lower energy (600–700 cm⁻¹).

In a reaction with $Cu(H_{-2}HisGlyGly)$, the first transient was identified as the binary Cu(Cys⁻)₂ complex, based on its spectral parameters. The Cu(H₋₂HisGlyGly), exhibiting d-d transition of Cu(II) at $\lambda_{\text{max}} = 555$ nm (Scheme 2), is considered to have a coordination structure involving N,N-,N-,O--donors, as referred to the Billo' rule.²⁷ If the His-residue in the ring A conserves this coordination mode, the ternary complex, Cu(H₋₁HisGlyGly)(Cys⁻), should be detected. Cu(H₋₂HisGlyGly) was changed completely to Cu(Cys⁻)₂ upon mixing with CysH. It is predicted that the chelate ring A in Cu(H₋₁HisGlyGly)(Cys⁻) is kinetically labile to rapidly dissociate through an intramolecular rearrangment. Probably, the chelate ring A is rearranged to a labile form, which is probably the histamine-like coordination structure (Scheme 4). When the chelate rings **A** and **B** participate in a fused-chelate of the ternary complex, the complex is fairly stable. A monodentate N-acetyl-penicillamine (Aps) could form a ternary complex $\text{Cu}(H_{-2}\text{HisGlyGly})(\text{Aps}^-)$ with a $S\to \text{Cu}(\mathbb{I})$ CT band at 360 nm. Both the chelate rings A and B are likely to be conserved in Cu(H₋₂HisGlyGly)(Aps⁻), where the His coordinates to Cu(II) via the terminal amino and two neighboring deprotonated amide nitrogens.²⁸

Scheme 3. Coordination structure for the ternary complex $Cu(H_{-1}L)(Cys^{-})$.

Complex	$\lambda_{\rm max}/{\rm nm}~(\mathcal{E}/{\rm M}^{-1}~{\rm cm}^{-1})$			
	$\sigma(S) \to Cu(II)$	$\pi(S) \to Cu(II)$	d-d	
Cu(H ₋₁ GlyGly)(Cys ⁻)	333 (4240)	406 (193)	542 (162)	
$Cu(H_{-1}GlyGlyGly)(Cys^{-})$	335 (4210)	398 (347)	542 (141)	
$Cu(H_{-1}HisGlyGly)(Cys^{-})$	not detected			
$Cu(H_{-1}LeuGlyGly)(Cys^{-})$	333 (4450)	383 (312)	538 (147)	
$Cu(H_{-1}GlyHisGly)(Cys^{-})$	342 (4520)	402 (247)	565 (131)	
$Cu(H_{-1}GlyLeuGly)(Cys^{-})$	342 (4770)	408 (62.5)	577 (151)	
$Cu(H_{-1}GlyGlyLeu)(Cys^{-})$	334 (4250)	382 (419)	536 (144)	
$Cu(H_{-1}GlyHisGly)(Acs^{-})$	346 (5310)	405 (288)	553 (157)	
$Cu(Cvs^-)_2$	334 (6170)	391 (2760)	526 (351)	

Table 2. Parameter of the Absorption Spectrum for the Ternary Cu(H₋₁L)(Cys⁻) and Binary Cu(Cys⁻)₂ Complexes

Scheme 4. Proposed coordination structure for the ternary complex $Cu(H_{-1}HGG)(Cys^{-})$.

Effects of Side-Chain of Amino-Acid Residue on the Ligand-Exchange. In a previous paper, we described that the formation of the $Cu(H_{-1}L)(Cys^{-})$ species from $Cu(H_{-2}L)$ is a sequential reaction composing of (3a) and (3b):^{19,29}

$$Cu(H_{-2}L) + Cys^{-} \underset{k_{11-}}{\overset{k_{11+}}{\leftarrow}} Cu(H_{-2}L)(Cys^{*-}), \tag{3a}$$

$$Cu(H_{-2}L)(Cys^{*-}) + H^{+} \underset{k_{1},-}{\overset{k_{12+}}{\rightleftharpoons}} Cu(H_{-1}L)(Cys^{-}).$$
 (3b)

A ligand replacement in $Cu(H_{-2}L)$ begins primarily at the carboxylate end. Firstly, the Cys^- replaces the fourth donor of $Cu(H_{-2}L)$ with the thiolate S, forming a ternary complex, $Cu(H_{-2}L)(Cys^{*-})$, in which Cys^{*-} works as a monodentate. In this reaction, the chelate ring C is dissociated. Next, the amino-nitrogen of the Cys^{*-} would replace the deprotonated amide-nitrogen to form $Cu(H_{-1}L)(Cys^-)$. By this reaction, the chelate ring C is opened.

The affinity of Cu(II) for the fourth donor controlled the rate of the Cu(H₋₁L)(Cys⁻) formation. Since the fourth site in Cu(H₋₁L), except for Cu(H₋₂GlyGlyHis), is occupied by the exchangeable oxygen, the rate constant k_{1+} is order of 10^5 M⁻¹ s⁻¹ or bigger. On the other hand, Cu(H₋₂GlyGlyHis), involving the imidazole nitrogen in the fourth site, was sluggish toward ligand-exchange, and the rate constants was arranged as follows; $k_{1+} < k_{2+}$. Then, a sequence of reactions, Cu(H₋₂GlyGlyHis) \rightarrow Cu(H₋₁GlyGlyHis)(Cys⁻) \rightarrow Cu(Cys⁻)₂, appears to occur simultaneously. The amount of the ternary complex was less than 5% of the total copper.

A feature of the reaction between $Cu(H_{-1}GlyHisGly)$ and CysH was a little complicated. The formation of $Cu(H_{-1}L)$ -(Cys) is very rapid, because the fourth binding site in $Cu(H_{-1}GlyHisGly)$ is occupied by kinetically exchangeable oxygen. The k_{1+} is probably $10^6 \text{ M}^{-1} \text{ s}^{-1}$ or bigger. The coordinated imidazole nitrogen in $Cu(H_{-2}GlyHisGly)(Cys^{*-})$ would resist being exchanged with the amino nitrogen of Cys^{*-} (Scheme 5).

Generally, conversion from $Cu(H_{-2}L)(Cys^{*-})$ to the $Cu(H_{-1}L)(Cys^{-})$ species was accompanied by protonation of the coordinated amide nitrogen. In contrast, reaction 3b in $Cu(H_{-1}GlyHisGly)(Cys^{*-})$ does not involve protonation. Then, an assumption could be proposed that the imidazole nitrogen in $Cu(H_{-1}GlyHisGly)(Cys^{-})$ is capable of replacing the amino nitrogen of Cys^{-} to back to $Cu(H_{-1}GlyHisGly)$ (Cys^{*-}). The overall equilibrium constant, K_1 , (K_{1+}/K_{1-}), between $Cu(H_{-1}GlyHisGly)$ and CysH was one or two orders of magnitude smaller than other system, and evaluated approximately $10^4 M^{-1}.^{28} Cu(H_{-2}GlyHisGly)(Cys^{*-})$ and $Cu(H_{-1}GlyHisGly)(Cys^{-})$ could not distinguish from each other, based on their absorption spectra. This is because $Cu(H_{-2}Gly-1)$

OCCH₂C-HNOC
$$CH_2$$
 OCCH₂CHNOC N OCCH₂CHNOC N NH_2 COO NH_2 COO

Scheme 5. Equilibrium between Cu(H₋₁GlyHisGly)(Cys*-) and Cu(H₋₁GlyHisGly)(Cys⁻).

HisGly)(Acs $^-$), having an analogous coordination structure to Cu(H $_2$ GlyHisGly)(Cys * -), is shown to exhibit a similar spectrum to Cu(H $_1$ GlyHisGly)(Cys $^-$); where Acs $^-$ denoted a monodentate *N*-acetylcysteinate.

Bulky side chains without coordinating ability also modify the feature of the ligand-exchange reaction. An isobutyl group in Leu-containing peptides appeared to retard the ligand-exchange when it was involved in the chelate ring dissociated by CysH. The k_{1+} value for Cu(H $_2$ GlyGlyLeu) was one order of magnitude smaller than that of Cu(H $_2$ GlyGlyGly). A similar result was observed in the k_{2+} of Cu(H $_2$ LeuGlyGly)(Cys $^-$) compared with Cu(H $_2$ GlyGlyGly)(Cys $^-$). As reported previously concerning the GlyLeuGly complex, the isobutyl group in ring **B** not only decreases the k_{1+} value, but also increases the k_{2+} .

Conclusion

The ligand-exchangeability of the Cu(II) in Cu($H_{-i}L$) (i = 1for GlyHisGly and i = 2 for other tripeptides) with CysH was determined by the coordinating ability of the fourth donors and the position of the side chains in the peptide backbone. Rings C and B of a 5-5-5 membered fused chelate ring in Cu(H_{-i}L) were successively opened by Cys⁻, and a ternary complex, $Cu(H_{-1}L)(Cys^{-})$, was formed. The rate of Cu(H₋₁L)(Cys⁻) formation was controlled primarily by the affinity of the Cu(II) for the fourth donor atom involved in ring C. In Cu(H₋₂GlyGlyHis), since kinetically stable imidazole nitrogen occupied the fourth site, the formation of the $Cu(H_{-1}L)(Cys^{-})$ species was slow. The rate constant k_{1+} was smaller than k_{2+} in the formation of Cu(Cys⁻)₂ from Cu(H₋₁GlyGlyHis)(Cys⁻). A species distribution curve reveals that Cu(H₋₂GlyGlyHis) and Cu(Cys⁻)₂ were major species in the reaction, and that Cu(H₋₂GlyGlyHis)(Cys⁻) was less than 5% of the total copper. $Cu(H_{-1}GlyHisGly)$ reacted with CysH, initially forming the ternary complex Cu(H₋₁GlyHisGly)(Cys*-). The formation of a ternary complex, Cu(H₋₁GlyHisGly)(Cys⁻), from Cu(H₋₁GlyHisGly)-(Cys*-) may involve an intramolecular ligand-exchange between the imidazole nitrogen of His and the amino nitrogen of Cys^{*-} in $Cu(H_{-1}GlyHisGly)(Cys^{*-})$. The ternary complex of HisGlyGly with CysH was extremely labile, so much so that it could not be detected by stopped-flow techniques. Probably, the N-terminal histidyl residue, coordinating to Cu(II) via the amino and imidazole nitrogens, formed a kinetically labile complex with a histamine-like structure. The position of the side chains, with or without coordination ability, was important in determining the reaction rate. The side chains in the chelate ring C retard the ligand-exchange, as observed in the Cu(H₋₁-GlyGlyLeu) reaction. The side chains in chelate-ring **B** not only retarded Cu(H₋₁GlyLeuGly)(Cys⁻) formation, but also stimulated conversion from Cu(H₋₁GlyLeuGly)(Cys⁻) to $Cu(Cys^{-})_{2}$.

References

- 1 H. Sigel and R. B. Martin, Chem. Rev., 82, 385 (1982).
- 2 H. C. Freeman, "Inorganic Biochemistry," ed by G. L. Eichhorn (1973), Vol. 1, pp. 121–166, and references cited therein.
- 3 Abbreviation used; L: free tripeptide molecule, $H_2NCHR^1CO-NHCHR^2CO-NHCHR^3COO^-$ for tripeptides, Gly: glycine, His: histidine, CysH: cysteine, Cys $^-$: cysteinate.
- 4 I. Sovago, "Biocoordination Chemistry," ed by K. Burger, Ellis Horwood, Chichester, England (1990), pp. 135–184, and references cited therein.
- 5 O. Yamauchi, Y. Nakao, and A. Nakahara, *Bull. Chem. Soc. Jpn.*, **46**, 2119 (1973).
 - 6 Each chelate ring in $Cu(H_{-2}L)$ is named as **A**, **B**, and **C**.
- 7 J.-I. Ueda, N. Ikota, A. Hanaki, and K. Koga, *Inorg. Chim. Acta*, 135, 43 (1987).
- 8 R. J. Sundberg and R. B. Martin, *Chem. Rev.*, **74**, 471 (1974).
 - 9 F. Schneider, Angew. Chem., Int. Ed. Engl., 17, 583 (1978).
- 10 W. H. Armstrong, "Metal Clusters in Proteins," ed by L. Que, Jr., Am. Chem. Soc., Washington, DC (1988), pp. 1–27.
- 11 A. G. Bearn and H. G. Kunkel, *Proc. Soc. Exp. Biol. Med.*, **85**, 44 (1954).
 - 12 B. Sarkar, Met. Ions Biol. Syst., 12, 233 (1981).
- 13 M. C. Linder, N. A. Lomeli, S. Donley, F. Mehrbod, P. Cerveza, S. Cotten, and L. Wooten, *Adv. Exp. Med. Biol.*, **448**, 1 (1999).
- 14 H. J. McArdle, M. J. Bingham, K. Summer, and T. J. Ong, *Adv. Exp. Med. Biol.*, **448**, 29 (1999).
- 15 T. P. A. Kruck and B. Sarkar, *Inorg. Chem.*, **14**, 2383 (1975).
 - 16 T. Sakurai and A. Nakahara, *Inorg. Chem.*, **19**, 847 (1980).
 - 17 A. Hanaki, Chem. Lett., 1976, 1225; 1980, 626; 1994, 1263.
- 18 A. Hanaki and H. Yokoi, *Inorg. Chim. Acta*, **123**, L7 (1986).
- 19 A. Hanaki, M. Hiraoka, T. Abe, Y. Funahashi, and A. Odani, *Bull. Chem. Soc. Jpn.*, **76**, 1747 (2003).
- 20 J.-I. Ueda, A. Hanaki, N. Yoshida, and T. Nakajima, *Chem. Pharm. Bull.*, **33**, 3096 (1985).
- 21 J.-I. Ueda, A. Hanaki, N. Yoshida, and T. Nakajima, *Chem. Pharm. Bull.*, **34**, 1315 (1986).
- 22 J.-I. Ueda, A. Hanaki, N. Yoshida, and T. Nakajima, *Chem. Pharm. Bull.*, **43**, 2042 (1995).
- 23 G. Schwarzenbach, "Die Komplexometrische Titration," F. Enke, Stuttgart (1955), p. 68.
- 24 B. Tonomura, H. Nakatani, M. Ohnishi, J. Yamaguchi-Itoh, and K. Hiromi, *Anal. Biochem.*, **84**, 370 (1978).
- 25 A. Hanaki, S. Saito, and N. Ikota, *Nippon Kagaku Kaishi*, **1995**, 388.
- 26 O. Yamauchi and A. Odani, J. Am. Chem. Soc., 107, 5938 (1985).
 - 27 E. J. Billo, Inorg. Nucl. Chem. Lett., 10, 613 (1974).
 - 28 A. Hanaki, to be submitted.
 - 29 A. Hanaki, A. Nagai, and N. Ikota, Chem. Lett., 1995, 611.